skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilke, Claus O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circulating mutations pose a concern can inform treatment or mitigation strategies such as alternative vaccines or targeted social distancing. In 2021, Hie B, Zhong ED, Berger B, Bryson B. 2021 Learning the language of viral evolution and escape.Science371, 284–288. (doi:10.1126/science.abd7331) proposed that variants of concern can be identified using two quantities extracted from protein language models, grammaticality and semantic change. These quantities are defined by analogy to concepts from natural language processing. Grammaticality is intended to be a measure of whether a variant viral protein is viable, and semantic change is intended to be a measure of potential for immune escape. Here, we systematically test this hypothesis, taking advantage of several high-throughput datasets that have become available, and also comparing this model with several more recently published machine learning models. We find that grammaticality can be a measure of protein viability, though methods that are trained explicitly to predict mutational effects appear to be more effective. By contrast, we do not find compelling evidence that semantic change is a useful tool for identifying immune escape mutations. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026